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A bilayer system of two-dimensional electron gases in a perpendicular magnetic field exhibits rich phenom-
ena. At total filling factor �tot=1, as one increases the layer separation, the bilayer system goes from an
interlayer-coherent exciton condensed state to an incoherent phase of, most likely, two decoupled composite-
fermion Fermi liquids. Many questions still remain as to the nature of the transition between these two phases.
Recent experiments have demonstrated that spin plays an important role in this transition. Assuming that there
is a direct first-order transition between the spin-polarized interlayer-coherent quantum Hall state and spin
partially polarized composite Fermi-liquid state, we calculate the phase boundary �d / l�c as a function of
parallel magnetic field, NMR/heat pulse, temperature, and density imbalance, and compare with experimental
results. Remarkably good agreement is found between theory and various experiments.
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I. INTRODUCTION

A bilayer two-dimensional electron gas �2DEG� in a
strong perpendicular magnetic field at total filling factor
�tot=1 exhibits rich phenomena. An important tuning param-
eter in this system is the ratio d / l, where d is the effective
interlayer distance and l is the magnetic length. At small d / l,
even with negligible tunneling, a remarkable bilayer quan-
tum Hall state with interlayer phase coherence emerges due
to interlayer Coulomb interaction. This bilayer quantum Hall
state can be described as a pseudospin ferromagnet where the
layer index acts as the pseudospin or an exciton condensate
formed by interlayer particle-hole pairing.1–3 Many remark-
able experimental signatures of this phase predicted by theo-
ries have been observed in experiments, including enormous
enhancement of zero-bias interlayer tunneling,4 linearly dis-
persing Goldstone mode,5 quantized Hall drag,6 and vanish-
ing resistance in counterflow.7 However, there are still im-
portant discrepancies between theory and experiment. For
example, the height of the interlayer tunneling conductance
is observed to be finite4 while theories predict it to be infi-
nite. Also, transport in counterflow experiments should be
completely dissipationless under a critical temperature for
phase coherence but in experiments dissipationless counter-
flow is only seen in the zero-temperature limit.7 The effect of
quenched disorder is believed to be crucial to reconcile these
discrepancies,8–10 although a quantitative understanding is
still lacking.

The nature of the phase transition when d / l is increased
and the quantum Hall phase is destroyed is even more
puzzling. In the limit d / l→�, each layer is at half filling,
and they should behave as weakly coupled composite
Fermi liquids. Much progress have been made in understand-
ing this phase using the Chern-Simons approach11–15 and the
dipolar quasiparticle approach.16–21 Although we understand
well both the coherent phase at d / l→0 and the composite
Fermi-liquid state at d / l→�, the transition between them
has been shrouded in mystery. There have been many
experimental22–35 and theoretical36–48 studies regarding the
nature of this transition. While some of these theoretical
works point to a direct transition between the two limiting

phases, either continuous45 or of first order,42,43 some other
works predict the existence of various types of exotic inter-
mediate phases, including translational symmetry broken
phase,36–38,46 composite-fermion paired state,39,40,47 phase of
coexisting composite fermions and composite bosons,44,48,49

quantum disordered phases,41 etc.
These theoretical works typically assume that the physical

spin is fully polarized and hence irrelevant across the transi-
tion. However, recent experiments have shown that spin
plays an important role in the transition. Reference 26 has
found that by applying a NMR pulse or heat pulse to depo-
larize the nuclei and hence increasing the effective magnetic
field coupled to the spin, the coherent phase is strengthened,
and the phase boundary shifts to higher value of d / l. Similar
behavior has also been observed by applying a parallel mag-
netic field.30 These experimental results indicate that at least
one of the phases involved in the transition is not fully po-
larized and that the polarization changes significantly across
the transition. The most likely possibility is that the incoher-
ent composite Fermi-liquid phase at large d / l is only par-
tially polarized, as shown by other experiments on single
layer at �=1 /2.50,51 If the transition between the coherent
phase and the less polarized incoherent phase is a thermody-
namic phase transition, it must be of first order: the magne-
tization is discontinuous across the transition, and, as the
experiments of Ref. 26 found, the transition can be tuned
using a Zeeman field which is conjugate to the magnetiza-
tion. These two facts together imply the first-order nature of
the transition. An alternative to the thermodynamic transition
scenario is a singularity-free quantum crossover as was sug-
gested recently in Refs. 47 and 48.

In this work, we assume that the transition tuned by d / l is
a thermodynamic first-order transition between spin-
polarized coherent �tot=1 quantum Hall state and partially
polarized composite Fermi-liquid state, and derive the
Clausius-Clapeyron relations for this system. The Clausius-
Clapeyron relations will allow us to obtain the phase bound-
ary shapes for the transition; a comparison of these bound-
aries with experiments presents a stringent consistency test
of the first-order transition scenario. The first-order scenario
was invoked by Ref. 43 to explain the strongly enhanced
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longitudinal Coulomb drag for intermediate d / l, and it also
has some support from exact-diagonalization study.42 Note
that we will only consider the case of negligible interlayer
tunneling.

The Clausius-Clapeyron relations are the results of match-
ing the free energies of the two phases along the phase
boundary. To be more specific, we denote the free-energy
density of the coherent and the incoherent phases to be Ec
and Ei, and define

f��,Btot,�n,T� = Ec��,Btot,�n,T� − Ei��,Btot,�n,T� ,

where ��d / l, Btot is the total magnetic field coupled to elec-
trons’ physical spin, �n= �n1−n2� /2 is the density imbalance,
and T is the temperature. At any point along the phase
boundary, we must have

f��c,Btot,�n,T� = 0. �1�

This equation can be viewed as defining the �c at which the
transition occurs. When one changes the total field by dBtot,
the critical �c�Btot ,�n ,T� also changes by d�c when the fill-
ing factor is kept fixed at �tot=1. Their relation is determined
by

0 =
� f

��
d�c +

� f

�Btot
dBtot, �2�

therefore, the slope of the phase boundary is determined by
the following ordinary differential equation �ODE�,

d�c

dBtot
= −

� f

�Btot

� f

��

=

�Ei

�Btot
−

�Ec

�Btot

� f

��

. �3�

A crucial assumption of our work is that

� f

��
= �

e2

�l3 , �4�

where e2 / ��l3� not only gives the correct units but is the only
energy scale that exists in this problem if we neglect the
Landau-level mixing. � is a universal positive dimensionless
constant. It is positive because f should be an increasing
function of �=d / l since the incoherent phase should be more
and more energetically favorable with increasing d / l. In gen-
eral, � could be a function of �=d / l, i.e., ��������0�
+O���−�0� /�0�, but since in experiments � does not change
much �ranging from 1.7 to 2�, ��−�0� /�0�1, we will as-
sume � to be a constant for simplicity.

Similar analysis also applies to finite-temperature transi-
tions,

d�c

dT
=

�Ei

�T
−

�Ec

�T

�
e2

�l3

. �5�

For density imbalance experiments, we will focus on the
phase boundary near �n=0. First, note that by symmetry

� f

��n
= 0. �6�

Thus, we need to expand f to second order in �n,

0 =
� f

��
d�c +

1

2

�2f

��n2 ��n�2 �7�

and, therefore,

d�c

d��n2�
=

1

2

�2Ei

��n2 −
1

2

�2Ec

��n2

�
e2

�l3

. �8�

The above equations constitute the Clausius-Clapeyron
relations for the bilayer quantum Hall systems. In the follow-
ing sections, we will investigate whether the phase boundary
shapes implied by Clausius-Clapeyron relations are consis-
tent with experiments, and whether a single universal param-
eter � can explain all available experimental results. To ob-
tain the detailed forms of free energy of both phases, we will
primarily work with the pseudospin ferromagnet description
for the coherent quantum Hall phase and the Chern-Simons
approach for the incoherent composite Fermi-liquid phase.
Spin transitions, finite-temperature transitions, and density
imbalance experiments are studied in Secs. II–IV, respec-
tively. Finally, we summarize and discuss our results in Sec.
V. Some theoretical details are relegated to Appendices A
and B.

II. SPIN TRANSITION EXPERIMENTS

References 26 and 30 have studied the effect of NMR/
heat pulse and parallel magnetic field on the transition tuned
by d / l, respectively. In the experiment of Ref. 30, since the
interlayer tunneling is negligible, the main effect of the par-
allel field is on the spins of electrons. Similarly, in the ex-
periment of Ref. 26, NMR/heat pulse acts to depolarize the
nuclei and therefore also changes the Zeeman field on the
electrons through the hyperfine coupling. Thus, these two
experiments can be analyzed in a similar fashion. Since we
assume the coherent phase is spin polarized, the spin part of
the coherent-phase free energy is simply the Zeeman energy,

Ec = −
1

2
NT�g��BBtot = −

e�g��BB�Btot

4	

, �9�

where NT is the total electron density of the two layers, B� is
the perpendicular magnetic field, Btot is the total magnetic
field coupled to electron spin, g=−0.44 is the g factor of the
GaAs two-dimensional electron gas, and �B is the Bohr mag-
neton.

For the partially spin-polarized incoherent phase, the
single-layer free energy is

Ei

2
=

1

2�
M2 − MBtot, �10�

where the magnetization
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M =
1

2
�g��B�n↑ − n↓� � �g��B�n �11�

and � is the single-layer spin susceptibility. The steady state
is obtained by minimizing Ei with respect to M,

� =
M

Btot
, �12�

therefore,

Ei

2
= �−

1

2
�Btot

2 , Btot � Btot,p

1

2�
Mmax

2 − MmaxBtot, Btot 
 Btot,p,	 �13�

where the maximum magnetization Mmax and the field for
full polarization Btot,p are given by

Mmax =
1

2
�g��Bn =

e�g��BB�

8	

,

Btot,p =
Mmax

�
. �14�

Plugging these forms of free energy into Eq. �3�, we obtain
an equation

d�c

dBtot
=�− 2�Btot +

e�g��BB�

4	


�
e2

�l3

Btot � Btot,p

0 Btot 
 Btot,p.
	 �15�

Note that the right-hand side �RHS� also depends on �c
through B� which determines �. Equation �15� can be solved
numerically to yield the �c−Btot curve. For typical experi-
mental parameters, d�c /dBtot starts out to be positive when
Btot is small, and continuously decreases to zero when

− 2�Btot +
e�g��BB�

4	

= 0, �16�

this is nothing but Eq. �14� which determines the magnetic
field at which all composite fermions get polarized.

It remains to determine the value of the composite-
fermion spin susceptibility �. This can be done if Btot and B�

at which full polarization occurs are known because from
Eq. �14� or �16� we have

� =
�g��BB�,p

4Btot,p�0
, �17�

where the subscript p denotes the point of full polarization.
In experimental and exact-diagonalization studies, one often
parametrize � with the form of noninteracting Fermi gas with
a “polarization mass” mp �Refs. 20 and 52�,

� =
mp

4	
2 ��g��B�2. �18�

In the lowest-Landau-level approximation, e2

�l is the only rel-
evant energy scale and thus


2

l2mp
�

e2

�l
. �19�

Therefore, presumably mp scales as 
B�,

mp = xme

B�, �20�

where me is the vacuum electron mass, x is a dimensionless
number, B� is in units of tesla. It is worth noting that unlike
free electrons spin susceptibility which is proportional to
1 /me, the susceptibility of composite fermions is propor-
tional to mp and therefore to 
B. The reason for this is that
the Bohr magneton �B depends on the bare mass of the elec-
tron, and therefore does not overturn the proportionality to
effective mass in the density-of states factor of the suscepti-
bility.

For the parallel field experiment of Ref. 30, composite
fermions get polarized at total density ntot=11�1010 cm−2,
tilting angle �=58°, which corresponds to Btot,p=8.60 T,
B�,p=4.56 T, x=0.56 if we parametrize � in terms of the
polarization mass mp. Then we solve the ODE, Eq. �15�, with
the boundary condition at the high-field end point �Btot
=10 T, ntot=11�1010 cm−2�, and plot the ntot deduced
from �c vs Btot in Fig. 1. To tune the result to resemble the
experimental results in Fig. 4a of Ref. 30, we get

� = �0.8 � 0.2� � 10−3, �21�

where the error mainly comes from fitting errors, meaning a
finite range of �’s make the �c−Btot curve resemble the ex-
perimental result.

For the NMR and heat-pulse experiments of Ref. 26, the
phase boundary before any perturbation is �c0=1.967, which
correspond to B�=3.26 T. Reference 26 has estimated the
effective nuclear magnetic field to be BN=−0.17 T, therefore

4 6 8 10
6

7

8

9
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11

B
tot

(T)

n to
t
(1

010
cm

−
2 )

FIG. 1. Total electron density deduced from the critical d / l
=�c vs the total magnetic field for the parallel magnetic field ex-
periments. Open and solid circles are experimental results of Giu-
dici et al. �Ref. 30� �cf. Fig. 4�a� there�. Solid line is our theoretical
calculation with the fitting parameter �=0.8�10−3. The boundary
condition in our calculation is chosen as ntot=11�1010 cm−2 when
B=10 T.
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the total effective magnetic field felt by electronic spin is
Btot=B�+BN. After a heat pulse, nuclear spins are depolar-
ized, and BN is set to zero. Btot is strengthened to B�, and the
phase boundary changes to �c=1.983. We can not determine
the spin susceptibility or the polarization mass directly from
experimental information, and therefore we use the numeri-
cal and experimental results from the literature mp

= �0.7�0.2�me

B� with B in units of tesla.50,52–55 In this

way, we obtain

� � �1.3 � 0.4� � 10−3, �22�

where the error mainly comes from uncertainty in the value
of the polarization mass mp.

Note that our calculations in this section do not rely on
the Chern-Simons description of composite fermions.

III. FINITE-TEMPERATURE TRANSITION
EXPERIMENTS

Reference 31 has studied the changes in critical �c=d / l as
a function of the temperature T. They found that the phase
boundary moves to smaller d / l with higher T. When analyz-
ing the temperature dependence of the transition, one needs
to include the entropy contributions to the free energy asso-
ciated with various low-energy excitations for both phases.
In the interlayer-coherent quantum Hall phase, the only gap-
less excitation is the linearly dispersing Goldstone mode,
which corresponds to in-plane spin wave in the pseudospin
language. Therefore, this mode dominates the temperature
dependence of the free energy of the coherent phase �see
Ref. 56�. Denoting its velocity to be v, we have the free
energy

Ec�T� = �
k

T ln�1 − e−
vk/T� �
− 1.2

2	

T3

�
v�2 �23�

and, therefore,

�Ec

�T
= −

1.8

	

T2

�
v�2 . �24�

We use the experimental result of Ref. 5 to estimate the value
of v �which we assume to be a constant independent of ��,

v = 1.4 � 104m s−1. �25�

For the incoherent phase, working in the Chern-Simons
framework, we have contributions from composite fermions
as well as Chern-Simons gauge fields. The free energy is

Ei = − T ln Z , �26�

where the partition function Z contains both composite-
fermion fields and Chern-Simons gauge fields of the two
layers. Integrating out the composite fermions, we obtain11,57

�see Appendix A for details�

Z = Z0Z+Z−, �27�

where Z0 is the partition function for free fermions, and

Z� =� Da�e−
d�d2x�a�D�
−1a�/2�, �28�

where a� are the in-phase and out-of-phase combinations of
Chern-Simons gauge fields of the two layers, and the polar-
izations D�

−1 in the Coulomb gauge have the following form

D�
−1 =

1

2��00
0 iq

4	

− iq

4	
�11

0 +
2V�q2

�4	�2
� , �29�

where the index 0 and 1 denote time and transverse compo-
nent, respectively,

V��q� =
1

2
�2	e2

q
�1 � e−qd��F�q� �30�

is linear combinations of intralayer and interlayer Coulomb
interactions, F�q� is the finite-thickness form factor,58,59 and
�00

0 and �11
0 are the fermion density and transverse current

correlations functions, respectively,

�00
0 �

m�

	
�1 + i

�

vFq
� ,

�11
0 � −

q2

12	m�

+ i
2n�

kFq
. �31�

m� is the activation mass of the composite fermions, and, as
we discuss below is different from the polarization mass mp
used in the previous section. Continuing the derivation,

Ei = − T ln Z = − T ln Z0 − T ln Z+ − T ln Z−, �32�

where the free fermion part gives

�Ei,fermion

�T
= −

��T ln Z0�
�T

= −
2	

3
T

m�


2 �33�

and the gauge-field parts give11,60

�Ei,�

�T
= − �

0

� �d�

	T2

e��

�e�� − 1�2�
0

� qdq

2	
Im ln det D�

−1.

�34�

A straightforward calculation following Ref. 11 shows that in
the zero-thickness approximation �form factor F�q� set to 1�,

�Ei,�

�T
= −

1.917

4	
�

5

3
C1

2/3T2/3 −
1.645C2

2	2 T ln
�0

T
, �35�

where

C1 =
16	n

kFde2/�
, C2 =

8	n

kFe2/�
, �0 =

�2kF�2

C2
,

where n is the single-layer density of composite fermions
and kF=
2	n.

Finite thickness corrections to the form of Coulomb inter-
action is found to have negligible effect on the value of �,
partly because it only affects the gauge-field contribution
which is itself dominated by the free composite-fermion qua-
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siparticle contribution for experimentally relevant tempera-
tures and for the choice of m� discussed below.

The value of the composite-fermion mass m� is believed
to be close to the value determined by the activation gaps of
fractional quantum Hall phases away from �=1 /2.11,13,15,57

Therefore, we use the experimental value of this activation
mass determined from gap measurements in Refs. 61 and 62,
which is

m�

me

B�

= 0.2 � 0.02. �36�

Note that in numerical calculations the activation mass is
typically smaller than experimental value by about a factor
of 2,11,63,64 but it is believed that the theoretical value should
approach experimental value once finite-thickness effect, dis-
order and Landau-level mixing are taken into account.64–67

Therefore, we feel the use of experimental value stated above
is more appropriate. Also note that the polarization mass mp
we used in the previous section is different from the mass we
use here. Conceptually, within the Landau-Fermi-liquid
theory, the two masses are related by mp=m� / �1+F0

a�, F0
a

being the zeroth spin-asymmetric Landau parameter.
Using this value of the mass along with the forms of free

energy in Clausius-Clapeyron Eq. �5�, we get an ODE, which
can be solved with the boundary condition that �c=1.83
when T=50 mK to yield the �c−T curve plotted in Fig. 2. To
make this curve resemble the experimental result of Ref. 31,
we have set

� = �0.7 � 0.2� � 10−3, �37�

where the error mainly comes from the uncertainty in the
value of the activation mass m� and also the fitting error,
meaning a finite range of �’s make the �c−T curve resemble
the experimental result.

In the above calculation, we assumed that the composite
Fermi liquid is spin unpolarized, and one might wonder how
partial spin polarization would affect the result. Because the
free fermion contribution dominates �Ei /�T and it is propor-
tional to the density of states of composite fermions, our
results would stay the same for partially polarized composite
Fermi liquid.

IV. DENSITY IMBALANCE EXPERIMENTS

References 24 and 32 have studied the dependence of the
critical �c=d / l on the density imbalance between the layers.
They observed that at small imbalance, the phase boundary
has a quadratic dependence on the density imbalance, and
the coherent quantum Hall phase survives at higher d / l with
larger imbalance.

Denoting the density of the two layers n1,2, a density im-
balance between the layers,

�n �
n1 − n2

2
�38�

costs an energy which includes a dominating geometrical
capacitance term and quantum-mechanical corrections. This
is true for both phases. For the coherent phase, we follow
Ref. 2 to obtain the free-energy density to be

Ec = �2	e2d

�
+ �m,E���n�2,

�m,E = �
0

� qdq

2	
Vz�q�h�q� , �39�

where 2	e2d /� is the geometrical capacitance term while
�m,E is the exchange contribution which tends to offset the
geometrical capacitance term. Here, Vz�q�=V�q�−U�q�,
V�q�= 2	e2

�q F�q� is the intralayer Coulomb interaction, F�q� is
the finite-thickness form factor,58,59 U�q�=V�q�e−qd is the in-
terlayer Coulomb interaction, and h�q�=−2	l2 exp�−q2l2 /2�
is the pair distribution function of the Halperin �1,1,1� wave
function.

The free-energy density of the incoherent phase is �see
Appendix B for details�

Ei =
��n�2

K̃ − K̃�
, �40�

where

K̃ �
1

�A
lim
q�→0

lim
�→0

��1,q� ,��1,−q� ,−�� ,

K̃� �
1

�A
lim
q�→0

lim
�→0

��1,q� ,��2,−q� ,−�� , �41�

where � is the inverse of temperature, A is the area of the
sample, and �1,2 are the composite-fermion density of each
layer. Treating the Coulomb interaction within random-phase
approximation �RPA�, we obtain �see Appendix B for details�

K̃ = − K̃� =
�

2�1 +
2	e2d

�
· �� , �42�

where � is the �→0, q→0 limit of the one-particle-
irreducible �1PI� density response function, namely, com-
pressibility, of a single-layer composite Fermi liquid. Plug-
ging Eq. �42� into Eq. �40�, one obtains the energy cost of
uniform density imbalance in the incoherent phase

0.05 0.1 0.15 0.2 0.25
1.65

1.7

1.75

1.8

1.85

T

δ c

FIG. 2. The phase boundary d / l vs the temperature T �in kelvin�
for the finite-temperature experiments. Circles are experimental re-
sults of Champagne et al. �Ref. 31� �cf. Fig. 2�c� there�. Solid line is
our theoretical calculation with the fitting parameter �=0.7�10−3.
The boundary condition in our calculation is chosen as �c=1.83
when T=50 mK.
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Ei = � 1

�
+

2	e2d

�
��n2. �43�

From the Clausius-Clapeyron Eq. �8�, the geometrical ca-
pacitance term of the two phases cancels out, and we have

� =
�−1 − �m,E

d�c

d��n2�
e2

�l3

. �44�

Since � is the single-layer compressibility, it is connected to
the ground-state energy per area of the composite Fermi liq-
uid EGS via

�−1 =
�2EGS

�n2 . �45�

Note that our definition of the compressibility is slightly dif-

ferent from some literature, where �−1=n2 �2EGS

�n2 are used in-
stead.

Alternatively, treating the Chern-Simons interaction
within RPA �see Appendix B for details�, we obtain

�−1 = �0
−1 − 16	2�d, �46�

where

�0 =
m�

	�1 + F0
s�

�47�

is the compressibility without the Chern-Simons interaction,
F0

s is the zeroth Landau parameter in the spin-symmetric
channel, and

�d = −
1

12	m�

�48�

is the Landau diamagnetic susceptibility. Therefore,

Ei = � 	

m�

+
	F0

s

m�

+
4	

3m�

+
2	e2d

�
��n2. �49�

Clearly, we can identify the four terms as free fermion con-
tribution, exchange/correlation effect, Landau diamagnetism
for Chern-Simons flux,32 and geometric capacitance term,
respectively.

Although the Chern-Simons expression of �, Eq. �49�,
offers valuable physical insight into its structure, the precise
value of the parameters m�, �d, and especially F0

s are not
very well understood. The best way to estimate � is to use its
connection with ground-state energy density EGS of compos-
ite Fermi liquid, Eq. �45�. In the zero-thickness approxima-
tion, Park et al.68 have estimated the value of EGS for spin-
unpolarized composite Fermi liquid to be

EGS = − 0.4695
e2

�l
n , �50�

thus

�−1 = − 0.4695 � 3	
e2

�
l , �51�

where n is the single-layer density of composite fermions
and l is the magnetic length.

Using this value of �−1 and the zero-thickness form of
Coulomb interaction to calculate the coherent-phase ex-
change term �m,E �because the numerical result for EGS of
the incoherent phase quoted above from Ref. 68 was also
done with zero thickness�, and extracting the curvature

d�c

d��n2�
from experiments, we readily obtain the value of �. This
result does not depend on the Chern-Simons description of
composite fermions. We have plotted in Fig. 3 the values of
� extracted from density imbalance experiments as well as
those determined from spin transition and finite-temperature
transition experiments. The error bars for the density imbal-
ance experiments mainly come from fitting errors.

Note that the main effect of the finite-thickness correction
to the form of Coulomb interaction is to reduce the exchange
terms of both phases. Since the value of � is related to the
difference between the exchange term of the two phases, we
do not expect the result of � to sensitively depend on this
effect. Nevertheless, we can include it in the Chern-Simons
treatment of �. We use the activation mass m�=0.2me


B�

estimated in Sec. III as the value of m�, set �d=
−1 / �12	m��, and use the Hubbard approximation to estimate
F0

s . In the Hubbard approximation, the exchange effect is
taken into account by introducing a many-body local-field
factor G�q�=q / �2
q2+kF

2� and F0
s =−

m�

	 limq→0 V�q�G�q�.
Thus, we obtain from Eq. �46�,

�−1 =
7

3

	
2

m�

−
	e2

�kF
. �52�

Using this value of �−1 and the finite-thickness form of Cou-
lomb interaction to calculate the coherent-phase exchange
term �m,E, we have calculated the values of � from density
imbalance experiments which turned out to be extremely
close to the results obtained earlier in Fig. 3.

0 2 4 6 8 10
0

1

2

3

4

5
x 10

−3

Different Experiments

η

FIG. 3. Summary of the value of � extracted from various ex-
periments. Experiment 1: parallel field experiment of Ref. 30. Ex-
periment 2: NMR/heat-pulse experiment of Ref. 26. Experiment 3:
finite-temperature transition experiment of Ref. 31. Experiments
4–7: density imbalance experiments of Ref. 32 with T=55, 85, 125,
and 200 mK. Experiments 8 and 9: density imbalance experiments
of Ref. 24 with phase boundary determined by Hall drag and tun-
neling. To obtain this result we used the numerical result of Ref. 68
for unpolarized composite Fermi-liquid ground-state energy to esti-
mate �−1. The horizontal line is the average value of � weighted by
inverse of error square, which is ��1�0.1��10−3.
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Comments about the value of the compressibility in the
composite Fermi-liquid phase are in order. First, in Ref. 69,
the compressibility of a single-layer 2DEG at zero field was
studied in detail, and it was found that aside from the well-
known density-of-states contribution and exchange contribu-
tion to the compressibility, there is a third contribution com-
ing from the so-called Hartree band-bending effect due to the
influence of the finite quantum well width on the out-of-
plane direction of electron wave function. For the bilayer
system studied here, we expect a similar effect on the com-
posite Fermi-liquid compressibility �−1 in the incoherent
phase and on �m,E for the coherent quantum Hall phase as
well. A quantitative analysis of this effect and its impact on
the density imbalance experiments is beyond the scope of
this paper, and we simply note that the Hartree band-bending
effect is essentially a single-particle effect,69 and therefore it
will contribute equally to �−1 and �m,E. To obtain the value
of � from Eq. �44�, we only need the difference between �−1

and �m,E, and therefore we do not expect the Hartree band-
bending effect to modify our results. Second, quenched dis-
order acts to broaden the Landau levels and therefore adds a
positive contribution to the compressibility. This could ac-
count for the close-to-zero compressibility measured by Ref.
69. Again, this effect is likely to be similar for both phases,
and we do not expect disorder to affect the difference be-
tween �−1 and �m,E appreciably. Nevertheless, disorder is
important in smearing the first-order transition into a con-
tinuous one �see discussion in Sec. V�.

We assumed that the composite Fermi liquid is unpolar-
ized above but again we do not expect partial polarization to
affect our results strongly. For Eq. �51�, Park et al.68 also
reported the ground-state energy for polarized composite
Fermi liquid to be very close to the unpolarized one quoted
above,

Epolarized = − 0.4656
e2

�l
n �53�

and, therefore, our results would also stay very close. In the
Chern-Simons treatment, Eqs. �49� and �52�, since the
Chern-Simons fields couple to both spins and the density and
current response function stays the same for partially polar-
ized and unpolarized composite Fermi liquids, our calcula-
tion also remains valid �see Appendix B�.

V. SUMMARY AND DISCUSSION

To summarize, we derived the Clausius-Clapeyron rela-
tions �Eqs. �3�, �5�, and �8�� for the phase transition tuned by
d / l in bilayer �tot=1 quantum Hall system, assuming that it
is a first-order transition between spin-polarized coherent
quantum Hall state and spin partially polarized composite-
fermion Fermi-liquid state. In Sec. II, we studied the changes
in phase boundary �d / l�c when the magnetic field coupled to
spin is changed by either NMR/heat pulse or parallel mag-
netic field. The phase boundary as a function of temperature
was studied in Sec. III. The temperature dependence of free
energy in the coherent quantum Hall phase is dominated by
the linearly, dispersing Goldstone mode while the incoherent
composite Fermi-liquid phase has contributions from both

fermions and gauge fields. In Sec. IV, we investigated the
changes in phase boundary when there is density imbalance
between the two layers. We use the result of Ref. 2 for the
free-energy cost of density imbalance in the coherent quan-
tum Hall phase. The free energy for the incoherent phase is
shown to be connected to the compressibility of single-layer
composite Fermi liquid.

Our main goal was to check the consistency of the
Clausius-Clapeyron relation with the observed transition.
Each experiment which observes the change in �d /��c due to
changing another parameter in the system indicates a value
for �, as defined in Eq. �4�; all values should agree.

In Fig. 3, we have plotted the values of � determined
from spin transition, finite-temperature transition, and den-
sity imbalance transition experiments. The horizontal line is
the average value of � weighted by inverse of error square,
i.e., the maximum-likelihood estimator of �. One can see
that, indeed, all nine values of � extracted from various ex-
periments roughly lie in the range 1�10−3–2�10−3, and the
weighted average value of �= �1�0.1��10−3 is roughly
within all the error bars. Our analysis, therefore, confirms the
consistency for the scenario of a direct first-order phase tran-
sition between coherent quantum Hall phase and incoherent
composite Fermi-liquid phase. Furthermore, the analysis pro-
vides a unified framework within which we can understand
the observed phase boundaries for several distinct experi-
ments.

In Sec. IV, we also worked in the Chern-Simons descrip-
tion of composite fermions �i.e., Eq. �52�� in addition to our
treatment �i.e., Eq. �51�� using the numerical results of Ref.
68, and we obtained extremely similar results. Stepping back
a little from that analysis with the Chern-Simons treatment,
one can pretend ignorance of any knowledge of the param-
eters including the effective mass m� and the exchange con-
tribution to �−1, and ask what values of them would give
good agreement between the values of � extracted from ex-
periments. We have plotted the standard deviation of � ex-
tracted from various experiments divided by the their aver-
age value in Fig. 4 as a function of the composite-fermion
mass �in units of me


B�� and the exchange contribution to
�−1, which is F0

s	 /m� �in units of e2l /��. The finite-thickness
form of the Coulomb interaction is used in calculating the
coherent-phase exchange term when producing this plot.
Gray color denotes the region where at least one of the �’s
becomes negative, thus unphysical, while dark blue denotes
parameter regimes which give rise to good agreement among
�’s extracted from different experiments. The horizontal line
denotes the Hubbard approximation to the exchange effect
�
2	�, while he vertical line denotes the experimental value
of the activation mass m��0.2me


B�.
We have not explicitly discuss the role of disorder, which

is always present in the samples. Disorder will bring spatial
fluctuations into some variables in the Clausius-Clapeyron
equations we have derived, and therefore smear the first-
order transition into a continuous one, as observed in experi-
ments. Roughly speaking, the analysis we have performed in
this work applies to the spatially averaged quantities. For
example, with disorder, the RHS of the Clausius-Clapeyron
equation for spin transitions, Eq. �15�, will acquire spatial
dependence most likely through a spatially fluctuating spin
susceptibility �,
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d�c�x��
dBtot

=

− 2��x��Btot +
eg�BB�

4	


�
e2

�l3

. �54�

Thus, one can take the spatial average of both sides and
study how the averaged critical �c changes with Btot, as we
did in this work. Furthermore, one can also take the standard
deviation of both sides of Eq. �54�, and conclude that the
width of the phase transition, which is the standard deviation
of �c, grows with Btot assuming the standard deviation of
��x�� does not change appreciably with Btot. One can also
study the finite-temperature transition in a similar way. Be-
cause there the free fermion term, Eq. �33�, dominates, one
can conclude that the transition becomes wider at higher
temperature, if one assumes the composite-fermion mass m�

has some temperature-independent spatial variation. This is
in accord with the experimental observation of Ref. 31.

A major question which is not directly addressed in our
analysis is the possibility of a continuous quantum crossover
between the coherent and incoherent phases �see, e.g., Refs.
47 and 48�. If indeed no real thermodynamic singularity ex-
ists even in the clean case, then there is no reason for the
Clausius-Clapeyron relations to hold as well as we find they
do. Nonetheless, there is also no contradiction in them hold-
ing where no first-order transition exists. In this case, how-
ever, we can draw the conclusion that the crossover region
between the two phases must be very narrow, such that it
approximates a smeared thermodynamic singularity �just as
disorder would widen a thermodynamic singularity� and
therefore follows the Clausius-Clapeyron relations we pre-

sented here for the unmixed phases. In other words, a good
agreement with the relations indicates that already at regions
in parameter space close to the transition, the thermodynamic
functions of the pure coherent and pure incoherent phases
apply, and they indicate a smeared phase-transition line.

Additional outstanding questions which we did not ad-
dress but are noteworthy are as follows. First, a thermody-
namic phase transition between the coherent and incoherent
phases does not have to be first order at high Zeeman fields
when both phases are spin polarized; a second-order phase
transition is not ruled out a priori. Future experiments should
clarify this issue �see the recent experiments of Refs. 34 and
35�. In addition, for the density imbalance transitions, we
have mainly focused on the regime of small imbalance,
while the experiments of Ref. 32 have studied the case of
large imbalance, e.g., ��=�1−�2�0.4. The interlayer inco-
herent phase in that regime could be two decoupled single-
layer fractional quantum Hall phase. It would be very inter-
esting to see if a similar Clausius-Clapeyron equation can
describe the phase transition in that case. Finally, although
our assumption, Eq. �4�, is very natural on qualitative
ground, a microscopic derivation of this quantity would be
very useful.
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APPENDIX A: DERIVATION OF THE TEMPERATURE
DEPENDENCE OF THE COMPOSITE FERMI-

LIQUID FREE ENERGY

Within the Chern-Simons description of the composite-
fermion Fermi liquid at �=1 /2, we have the following par-
tition function of the system:

Z =� Da1Da2D�1�D�2�e−
d�d2xL, �A1�

where

L = �
n=1,2

��n�
† ��� − �n − ian,0��n� −

i

8	
an�������an�

+
1

2m
�n�

† �− i � − a�n�2�n� +
1

2
� d2x��n�

† �x��n��x�V�x

− x���n��
† �x���n���x��� +� d2x��1�

† �x��1��x�U�x

− x���2��
† �x���2���x�� , �A2�

FIG. 4. �Color online� Standard deviation of � among various
experiments divided by their average value �which measures the
goodness of agreement between �’s� within the Chern-Simons
framework as a function of the composite-fermion mass and the
exchange contribution to �−1 �see Eq. �52��. Horizontal axis:
composite-fermion mass in units of me


B�, me being the vacuum
electron mass, B� is in units of tesla. Vertical axis: exchange con-
tribution to �−1, which is F0

s	 /m� �in units of e2l /�, l being the
magnetic length�. Gray color denotes the region where at least one
of the �’s becomes negative, thus unphysical. The horizontal line
denotes the Hubbard approximation to the exchange effect �
−
2	�. The vertical line denotes the experimental value of the ac-
tivation mass m��0.2me


B�, which is the value of composite-
fermion mass we used in calculations for Figs. 2 and 3.
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where �n� is the composite-fermion fields in the nth layer
with spin �, V and U are the intralayer and interlayer Cou-
lomb interaction, respectively. Here, an� are the fluctuations
of the Chern-Simons gauge fields in the nth layer from its
saddle-point value which cancels the external magnetic field
exactly and �=0,1 ,2 are the time and two spatial coordi-
nates, respectively. Integrating out an,0, one obtains the ex-
pected constraints

� � a�n = 4	�n�
† �n�. �A3�

Following Ref. 11, we make use of this constraint and re-
place �n�

† �n� in Coulomb interaction terms by ��a�n / �4	�.
Next, we define

a�� = a1� � a2�,

V� =
V � U

2
, �A4�

and reorganize L as

L = L f + LCS,

L f = �1�
† ��� − �1 − i

a+0 + a−0

2
��1� + �2�

† ��� − �2 − i
a+0 − a−0

2
��2� + �1�

† �− i � − �a�+ + a�−�/2�2

2m
�1�

+ �2�
† �− i � − �a�+ − a�−�/2�2

2m
�2�,LCS = −

i

16	
a+�������a+� −

i

16	
a−�������a−� +

1

2

1

�4	�2� d2x��� � a�+�x��V+�x − x����

� a�+�x��� +
1

2

1

�4	�2� d2x��� � a�−�x��V−�x − x���� � a�−�x��� . �A5�

Denoting the free fermion partition function to be

Z0 =� D�1�D�2� exp�−� d�d2xL f�a� = 0�� , �A6�

and following standard methods11 to integrate out composite-
fermion fields �n�, we obtain

Z = Z0Z+Z−, �A7�

where Z0 is the partition function for free fermions, and

Z� =� Da�e−
d�d2x�a�D�
−1a�/2�. �A8�

In Coulomb gauge, one can treat the polarizations D�
−1 as 2

�2 matrices with index 0 and 1 to be the time and transverse
component, respectively. Thus, D�

−1 take the following form:

D�
−1 =

1

2��00
0 iq

4	

− iq

4	
�11

0 +
2V�q2

�4	�2
� , �A9�

where �00
0 and �11

0 are the density and transverse current
correlation functions of free fermions resulted from integrat-
ing out composite-fermion fields. Thus, the free energy is
given by

Ei = − T ln Z = − T ln Z0 − T ln Z+ − T ln Z− �A10�

and the rest of the steps are given in Sec. III.

APPENDIX B: DERIVATION OF THE FREE ENERGY FOR
DENSITY IMBALANCE IN COMPOSITE FERMI-

LIQUID PHASE

Starting from action, Eq. �A1�, or any other action for
composite fermions, we integrate out all fluctuating fields
and obtain

Z = exp� 1

2�A
�
q� ,�

�Kq� ,��1,q� ,��1,−q� ,−� + Kq� ,��2,q� ,��2,−q� ,−�

+ 2Kq� ,�� �1,q� ,��2,−q� ,−��� , �B1�

where

Kq� ,� =
1

�A
��1,q� ,��1,−q� ,−�� =

1

�A
��2,q� ,��2,−q� ,−�� ,

Kq� ,�� =
1

�A
��1,q� ,��2,−q� ,−�� , �B2�

where � j is the composite-fermion density of the jth layer, �
is the inverse of the temperature, A is the area of the sample,
and � j,q� ,� is the Fourier-transformed potential in the jth
layer. For a constant potential � j�j=1,2�, we have

� j,q� ,� = � j · �A�q� ,0��,0, �B3�

and the grand potential � is

� = − T ln Z = −
A

2
�K̃�1

2 + K̃�2
2 + 2K̃��1�2� , �B4�

where
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K̃ � lim
q�→0

lim
�→0

Kq� ,�, K�˜ � lim
q�→0

lim
�→0

Kq� ,�� . �B5�

The density in each layer is

n1 = −
1

A

��

��1
= K̃�1 + K̃��2,

n2 = −
1

A

��

��2
= K̃�2 + K̃��1. �B6�

Finally, the free energy is obtained via a Legendre transfor-
mation

F = � + �1n1A + �2n2A =
A

4� �n1 − n2�2

K̃ − K̃�
+

�n1 + n2�2

K̃ + K̃�
� .

�B7�

Within the RPA treatment of the Coulomb interaction, the
full density response function K is related to its 1PI counter-
part � �which neglects the long-range Coulomb interaction�
by

K−1 = �−1 + Ṽ , �B8�

where K, �, and Ṽ are 2�2 matrices in the layer-index
space,

Ṽ = �V U

U V
�, � = ��00 0

0 �00
� . �B9�

Here, V and U are intralayer and interlayer Coulomb inter-
action potential, respectively, and �00 in the static uniform
limit gives the single-layer compressibility �,

� � lim
q→0

lim
�→0

�00. �B10�

Solving Eq. �B8�, we have

K11 = K22 =
�00�1 + �00V�

�1 + �00V�2 − �00
2 U2 ,

K12 =
− ��00�2U

�1 + �00V�2 − �00
2 U2 .

Given the form of Coulomb interactions

V�q� =
2	e2

q
F�q�, U�q� = V�q�e−qd, �B11�

and the fact that the finite-thickness form factor F�q�→1 as
q→0, in the limit �→0 and q→0, the denominators of K11,
K22, and K12 become

�1 + �00V�2 − ��00�2U2 →
4	e2�

�q
�1 +

2	e2�d

�
�,

as � → 0, q → 0. �B12�

Therefore in this limit

K̃ � lim
q→0

lim
�→0

K11 =
�

2�1 + 2	e2�d/��
,

K̃� � lim
q→0

lim
�→0

K12 = −
�

2�1 + 2	e2�d/��
, �B13�

and the imbalance part of the free-energy density is

Ei = lim
q�→0

lim
�→0

�n2

K̃ − K̃�
= � 1

�
+

2	e2d

�
��n2, �B14�

as shown in Sec. IV. This result does not depend on the
Chern-Simons description of composite fermions. Note also

that the total compressibility K̃+ K̃� vanishes linearly in q as
q→0 due to the long-range nature of the Coulomb interac-
tion, similar to the single-layer case as analyzed by Halperin
et al.11

To calculate the single-layer compressibility � within the
Chern-Simons framework, we have the following RPA equa-
tion:

���−1 = ��0�−1 + C , �B15�

where C is the propagator of the Cherns-Simons field and �0

is the correlation functions without the Chern-Simons inter-
action. We work in the Coulomb gauge and treat �, �0, and
C as 2�2 matrices in the space of density and transverse
current. In the static and long-wavelength limit, we have

�0 = ��0 0

0 �dq2 �, C =
4	

q
� 0 i

− i 0
� , �B16�

where �0=m� / �	
2�1+F0
s�� is the density response function

neglecting Chern-Simons interaction and �d is the Landau
diamagnetic susceptibility. Hence,

�−1 = �0
−1 − 16	2�d, �B17�

as shown in Sec. IV. Note that these results are the same for
unpolarized and partially polarized composite Fermi liquids,
because Eq. �B15� is valid in any case since Chern-Simons
fields couple to both spins, and the value of �0 and �d in Eq.
�B16� stays the same for partially polarized composite Fermi
liquid. The value of F0

s in the Hubbard approximation treat-
ment is also roughly the same for partially polarized and
unpolarized composite Fermi liquids.
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